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Abstract

The effects of variable viscosity, variable thermal conductivity and thermocapillarity on the flow and heat transfer in a laminar liquid
film on a horizontal stretching sheet is analyzed. Using a similarity transformation the governing time dependent boundary layer equa-
tions for momentum and thermal energy are reduced to a set of coupled ordinary differential equations. The resulting five-parameter
problem is solved numerically for some representative value of the parameters. It is shown that the film thickness increases with the
increase in viscosity of the fluid. In other words viscosity resists film thinning. Further it is shown that more heat flows out of the liquid
through the stretching surface when conductivity increases with temperature than that for the case when conductivity decreases with
temperature.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Flow dynamics due to the stretching of a boundary
along with heat transfer is relevant in extrusion process.
In particular, in the extrusion of a polymer in a melt-spin-
ning process, the extrudate from the die is generally drawn
and simultaneously stretched into a thin sheet, and then
solidified through quenching or gradual cooling by direct
contact with water or coolant liquid. Crane [1] gave an
exact similarity solution in closed analytical form for
steady two-dimensional boundary layer flow caused by
the stretching of a flat sheet which moves in its own plane
with velocity varying linearly with distance from a fixed
point. Due to its practical applications, the stretching sheet
problem has attracted several researchers [2–12] for the last
three decades and is extensively studied to understand the
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same. In all these studies, boundary layer equation is con-
sidered and the boundary conditions are prescribed at the
sheet and on the fluid at infinity. Imposition of similarity
transformation reduces the system to a set of ODE, which
is then solved either analytically or numerically. Wang [13]
further widened its horizon to study the flow of liquid film
on an unsteady stretching surface. Using Wang’s special
type of similarity transformation, Andersson et al. [14]
have studied the unsteady stretching flow in case of finite
thickness for power-law fluid. Later on Andersson et al.
[15] have extended Wang’s unsteady thin film stretching
problem to the case of heat transfer.

Recently Dandapat et al. [16] studied the effect of the
thermocapillarity on the hydrodynamics and heat transfer
in a liquid film on a stretching surface. Thermocapillarity
induces surface-tension gradients along the horizontal
interface between the passive gas and the liquid film. These
surface-tension gradients generate an interfacial flow that,
through viscous drag, either oppose or support the shear-
driven motion due to stretching sheet. Furthermore, the
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Nomenclature

A viscosity variation parameter
b stretching rate (s�1)
Cf local skin friction coefficient, Eq. (27)
cp specific heat (J kg�1 K�1)
f dimensionless stream function, Eq. (14)
h film thickness (m)
k thermal conductivity (W m�1 K�1)
M thermocapillarity number, Eq. (25)
Ma Marangoni number, Eq. (26)
Nux local Nusselt number, Eq. (28)
Pr Prandtl number, Pr = m0q0cp/k0

q heat flux, k0oT/oy (J s�1 m�2)
Rex local Reynolds number, Ux/m0

S unsteadyness parameter, a/b
t time (s)
T temperature (K)
U sheet velocity (m s�1)
u horizontal velocity component (m s�1)
v vertical velocity component (m s�1)
x horizontal coordinate (m)
y vertical coordinate (m)

Greek symbols

a constant (s�1)
b dimensionless film thickness
d thermal conductivity variation parameter
g similarity variable, Eq. (16)
c constant (K�1)
n constant (K�1)
h dimensionless temperature
l dynamic viscosity (kg m�1 s�1)
m kinametic viscosity (m2 s�1)
q density (kg m�3)
r surface-tension (kg s�2)
s shear stress, �lou/oy (kg m�1 s�2)
w stream function (m2 s�1)

Subscripts

i isothermal sheet
o origin
ref reference value
s sheet
x local value
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presence of thermocapillarity couples the hydrodynamic
and the thermal boundary layer problems. Since there is
appreciable temperature difference between the plate and
the fluid and further it is well known that viscosity, sur-
face-tension and conductivity of the fluid are strongly
dependent on temperature, the variations of these physical
quantities with temperature tempted us to study the effect
of these variations in the flow dynamics.

It will be demonstrated that exact similarity can be
achieved also in the presence of thermocapillarity, variable
viscosity and thermal conductivity. Accurate numerical
solutions will be provided for the resulting five-parameter
problem.
2. Mathematical formulation

2.1. Governing equations and boundary conditions

Consider a thin elastic sheet that emerges from a narrow
slit at the origin of a Cartesian coordinate system as
depicted schematically in Fig. 1. The continuous sheet at
y = 0 moves in its own plane with the velocity

U ¼ bx=ð1� atÞ ð1Þ

where b and a are both positive constants with dimension
time�1. The surface temperature Ts of the stretching sheet
varies with the distance x from the slit as

T s ¼ T 0 � ð1=2ÞT ref � Rexð1� atÞ�1=2

¼ T 0 � T ref ½bx2=2m0�ð1� atÞ�3=2
: ð2Þ
Here,

Rex ¼ Ux=m0 ¼ bx2=m0ð1� atÞ ð3Þ

is a local Reynolds number based on the sheet velocity U.
T0 is the temperature at the slit and Tref can be taken as a
constant reference temperature such that 0 6 Tref 6 T0.
The expression (1) for the sheet velocity U(x, t) shows that
the elastic sheet, which is fixed at the origin, is stretched by
applying a force in the positive x-direction. The effective
stretching rate b/(1 � at) increases with time since a > 0.
The expression (2) for the temperature Ts(x, t) of the sheet
represents a situation in which the sheet temperature de-
creases from T0 at the slit in proportion to x2 and such that
the amount of temperature reduction along the sheet in-
creases with time.

A thin liquid film of uniform thickness h(t) lies on the
horizontal sheet (cf. Fig. 1). The fluid motion within the
film is primarily caused by the stretching of the elastic
sheet. We have neglected the effect of latent heat due to
evaporation by assuming the liquid to be nonvolatile. Fur-
ther buoyancy is neglected due to the relatively thin liquid
layer but it is not so thin that intermolecular forces come
into play. Variation of the viscosity, surface-tension and
thermal conductivity with temperature are assumed to be
in the form:

l ¼ l0e�nðT�T 0Þ; ð4Þ
r ¼ r0½1� cðT � T 0Þ� ð5Þ

and

k ¼ k0½1þ cðT � T 0Þ�; ð6Þ
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Fig. 1. Schematic diagram of the flow problem.
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where l0, r0 and k0 are the viscosity, surface-tension and
conductivity of the fluid respectively at slit temperature
T0. For most liquids the surface-tension and viscosity de-
creases with temperature, i.e. c and n are positive fluid
properties. In general c > 0 for fluids such as water and
air, while c < 0 for fluids such as lubrication oils. The veloc-
ity and temperature fields in the thin liquid layer are gov-
erned by the two-dimensional boundary layer equations
for mass, momentum and thermal energy:

ou
ox
þ ov

oy
¼ 0; ð7Þ

ou
ot
þ u

ou
ox
þ v

ou
oy
¼ 1

q0
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oy
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oy

� �
; ð8Þ

oT
ot
þ u

oT
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oT
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¼ 1
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oy
k
oT
oy

� �
: ð9Þ

Here viscous dissipation of energy has been assumed negli-
gible. The pressure is constant in the surrounding gas phase
and the gravity force gives rise to a hydrostatic pressure
variation in the liquid film.

In order to justify the boundary layer approximation,
the length scale in the primary flow direction must be sig-
nificantly larger than the length scale in the cross-stream
direction. Now, if (m0/b)1/2 is a representative measure of
the film thickness, the scale ratio x/(m0/b)1/2� 1. It is read-
ily seen that the local Reynolds number in Eq. (3) initially
equals the square of this scale ratio. Thus, just as in aero-
dynamic boundary layer theory, cross-stream diffusion of
momentum and thermal energy can only be neglected at
high Reynolds numbers.

The associated boundary conditions are

u ¼ U ; v ¼ 0; T ¼ T s at y ¼ 0; ð10Þ
lou=oy ¼ or=ox at y ¼ h; ð11Þ
oT=oy ¼ 0 at y ¼ h; ð12Þ
v ¼ dh=dt at y ¼ h: ð13Þ

Here, it is implicitly assumed that the mathematical prob-
lem is defined only for x P 0. It is also assumed that the
surface of the planar liquid film is smooth and free of sur-
face waves. Although the influence of interfacial shear due
to the quiescent atmosphere is negligible but a balance be-
tween the viscous shear stress s = �lou/oy and thermal
stress prevails which is represented in (11). The heat flux
q = �koT/oy vanishes at the adiabatic free surface, cf.
Eq. (12), whereas Eq. (13) imposes a kinematic constraint
on the fluid motion.

2.2. Similarity transformation

Let us introduce dimensionless variables f and h and the
similarity variable g as

w ¼ fm0bð1� atÞ�1g1=2 � x � f ðgÞ; ð14Þ
T ¼ T 0 � T ref ½bx2=2m0�ð1� atÞ�3=2hðgÞ; ð15Þ
g ¼ ðb=m0Þ1=2ð1� atÞ�1=2y; ð16Þ

in which w(x,y, t) is the physical stream function which
automatically assures mass conservation (7). The velocity
components are readily obtained as

u ¼ ow=oy ¼ bxð1� atÞ�1f 0ðgÞ; ð17Þ

v ¼ �ow=ox ¼ �fm0bð1� atÞ�1g1=2f ðgÞ: ð18Þ

The mathematical problem defined in Eqs. (7)–(13) are
then transformed into a set of ordinary differential equa-
tions and their associated boundary conditions:

Sðf 0 þ gf 00=2Þ þ ðf 0Þ2 � ff 00 ¼ eAh f 000 þ Af 00h0½ �; ð19Þ
Pr½ðS=2Þð3hþ gh0Þ þ 2hf 0 � h0f �

¼ �dðh0Þ2 þ ð1� dhÞh00; ð20Þ
f 0ð0Þ ¼ 1; f ð0Þ ¼ 0; hð0Þ ¼ 1; ð21Þ

f 00ðbÞ ¼ M :hðbÞe�AhðbÞ; ð22Þ
f ðbÞ ¼ Sb=2; ð23Þ
h0ðbÞ ¼ 0; ð24Þ

where h = (T � T0)/(Ts � T0), d = �c(Ts � T0), A =
�n(Ts � T0) and prime denotes differentiation with respect
to g. It is to be noted here that A is positive as T0 > Ts.

The five dimensionless parameters appear explicitly in
the transformed problem. These are the unsteadiness
parameters S = a/b, the Prandtl number Pr = m0q0cp/k0,
the variable viscosity parameter A, thermal conductivity
parameter d and the thermocapillary parameter
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Fig. 2. Similarity velocity profiles f0(g) for d = 0.0, Pr = 1.0, S = 0.8 and
for different values of A and M.
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M � cr0T ref

l0ðbm0Þ1=2
: ð25Þ

The parameter M, which emerges naturally from the simi-
larity analysis, is closely related to the Marangoni number,
a frequently used parameter in the analysis of thermocap-
illary-driven flows and involves a characteristic length
scale. In the present context the thickness of the liquid layer
is of the order (m0/b)1/2 and the Marangoni number based
on this scale becomes:

Ma � cr0T ref

ffiffiffiffiffiffiffiffiffi
m0=b

p
q0cp

l0k0

¼ Pr �M : ð26Þ

In the transformed problem, boundary conditions are
imposed at g = 0 and at g = b, the value of the similar-
ity variable g at the free surface. Thus Eq. (16) gives
b = (b/m0)1/2(1 � at)�1/2h for y = h. b is a yet unknown con-
stant that should be determined as an integral part of the
boundary-value problem. The kinematic constraint (13)
at y = h(t) thus transforms into the free surface condition
(23) and the interfacial stress balance (11) leads to (22)
which serves to couple the momentum boundary layer
problem to the thermal boundary layer problem. Of partic-
ular relevance is the local skin friction coefficient

Cf �
2ss

qU 2
¼ �2eAf 00ð0Þ � Re�1=2

x ð27Þ

and the local Nusselt number

Nux � �
x

T ref

oT
oy

� �
y¼0

¼ 1

2
ð1� atÞ�1=2 � h0ð0Þ � Re3=2

x ; ð28Þ

where Rex is the local Reynolds number defined in Eq. (3).
Cf decreases linearly with the distance from the slit,
whereas Nux increases as x3.

3. Numerical procedure

The non-linear differential equations (19) and (20) sub-
ject to the boundary conditions (21)–(24) constitute a
two-point boundary value problem, which was solved by
the method of adjoints. The two ODEs (19) and (20) were
first formulated as a set of five first-order equations. For a
tentative value of b, this set subjected to the three explicit
conditions (21), the explicit terminal condition (24) and
the implicit terminal condition (22) was solved by the
method of adjoints. The numerical solution did generally
not satisfy the auxiliary terminal condition (23), and the
estimated value of b was therefore systematically adjusted
until Eq. (23) was satisfied to within 10�4. For non-linear
two-point boundary-value problems, the method of
adjoints involves forward integration of the five ODEs
and multiple backward integrations of the five correspond-
ing adjoint equations, i.e. equations which are adjunct to
analytically determined variational equations. The iterative
process, as described in more detail in chapter 3 of Roberts
and Shipman [17], was terminated when Eqs. (22) and (24)
were satisfied to within 10�8.
4. Results and discussion

In this study our main focus is to study the effects of vis-
cosity and conductivity variations with temperature on
hydrodynamic and thermal characteristics of the overlying
fluids above the stretching surface.
4.1. Effects of viscosity variation

Fig. 2 shows the effect of viscosity variation on velocity
profile f 0(g) where g varies from the stretching sheet (g = 0)
to the free surface of the film (g = b). From this figure, it is
clear that dimensionless film thickness b increases with the
increase in viscosity of the fluid. Further it can be seen that
the increase of viscosity increases f 0(g) near the stretching
surface. It is to be noted here that the thermocapillarity
produces an outward flow (for the present problem) along
the free surface and it does not affect the flow near the
stretching surface. As a result flow near to the stretching
surface is solely guided by the action of viscous stress.
Fig. 3 reveals that the local skin friction coefficient �f 00(0)
decreases with the increase in viscosity variation parameter
A. Further it is to be noted that the free surface velocity
f 0(b) is decreasing with increasing A due to thickening of
the liquid layer. This trend can also be observed from Figs.
2 and 4.

Fig. 5 depicts the variation of temperature profile h(g)
due to viscosity variation. Local heat transfer coefficient
�h0(0) at the sheet increases with the increase in viscosity
as pictured in Fig. 7.
4.2. Effects of conductivity variation

Influence of conductivity variation (d) on velocity profile
is not impressive although dimensionless film thickness b
changes moderately with d as depicted in Fig. 6. But the
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Fig. 4. Free surface velocity f 0(b) vs. viscosity variation parameter A for
M = 0.5, Pr = 1.0, S = 0.8 and for different values of d.
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thermal characteristics are considerably influenced that can
be readily observed from Figs. 7–9. Fig. 7 displays the local
rate of heat transfer �h0(0) at the stretching sheet. The fig-
ure shows that more heat flows out of the liquid through
the stretching surface when conductivity increases with
temperature (represented by dotted line) than that for the
case when conductivity decreases with temperature (repre-
sented by dash-dot line). As a result fluid losses more tem-
perature when d = 0.1 than that for the corresponding case
when d = �0.1. This phenomena are depicted in Figs. 8
and 9. Higher heat transfer rate (d = 0.1) at the stretching
sheet allows the adjacent liquid to cool faster than that for
the case (d = �0.1) of lower heat transfer rate. As a result
local skin friction coefficient �f 00(0) is less for the case when
d = 0.1 in comparison with that for d = �0.1 and it can be
observed from Fig. 3.
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Fig. 7. Dimensionless heat flux �h0(0) vs. viscosity variation parameter A

for M = 0.5, Pr = 1.0, S = 0.8 and for different values of d.
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5. Conclusion

Unsteady flow of a thin liquid film over a stretching
sheet is studied in the light of variation of fluid properties
due to temperature differences. In this study emphasis is
given on how velocity field, skin friction, temperature dis-
tribution and heat transfer changes due to the variation
of viscosity, conductivity and thermocapillarity with tem-
perature. We have used a similarity transformation that
reduces the governing equations to a system of non-linear
ODEs which are then solved numerically by the shooting
method (method of adjoint).

It is found that velocity field increases when viscosity
increases near the sheet. In other words, increase in viscos-
ity produces increased shear stress which results velocity
increase near the sheet. However variation of conductivity
with temperature do not influence the velocity profiles
impressively although film thickness changes appreciably.
Further increase in conductivity with temperature increases
heat flow through the stretching surface.
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